

OMNIPROBE

·12-HOLE PROBE

OMNIPRO REDUCTION SOFTWARE

APPLICATIONS:

- Determination of Three Components of Flow Velocity Plus Total and Static Pressure at Probe Tip
- Accurate Resolution of Velocity Vectors as High as 165° from Probe Axis
- Measurement of Reversed Flows
- Measurement of Time-Averaged Flows, Typical. Calibrated Frequency Response up to 500 Hz Possible, Depending on Pressure Sensors and Tubing Connections
- Flow Speeds from 5 m/s to 325 m/s, Mach 0.02 to Mach 0.95. Mach 0.02 – 0.3 Recommended for Best Performance

FEATURES:

Omniprobe

• Spherical Tip with 12 Pressure Ports

- Standard Omniprobe Tip Diameter of 9.52 mm, with 6.35 mm Option
- Multiple Standard Probe Geometries
- Rugged Construction using Stainless Steel
- Aeroprobe Expertise in Omniprobe Design and Construction
- High-Accuracy, 7000+ Point Aerodynamic Calibrations
- Long Intervals Between Aerodynamic Calibrations under Normal Usage

Omniprobe Pressure-to-Velocity Reduction Software

- High-Accuracy Reduction with Local-Least Square (LLS) Method
- Max Errors of 2% in Velocity Magnitude, 1.5° in Flow Angles
- Multi-Region Searching Algorithm for Sector Boundary Points

AEROPROBE CORPORATION 1700 KRAFT DRIVE, STE 2350 BLACKSBURG, VA 24060

INTRODUCTION:

Standard multi-hole probes are restricted to flow measurements where the velocity vector made an angle of 70° (or less) with the probe axis (see Aeroprobe product information for 5-hole and 7-hole The introduction of the multi-hole probes). omniprobe represented a vast improvement with regards to the angular resolution of multi-hole probes. By employing 12 pressure ports distributed on the surface of a spherical surface, the omniprobe can accurately measure flows from virtually any direction. Like the traditional multi-hole probes, data acquisition with the omniprobe requires (1) the probe itself, (2) an accurate aerodynamic probe calibration, (3) pressure sensors and data acquisition in order to measure the probe port pressures and (4) a pressure-to-velocity reduction method based on the calibration. This document gives product information for (1), (2) and (4) above.

OMNIPROBE:

Standard Omniprobe

Aeroprobe offers two standard omniprobe geometries: straight and L-shaped. Standard construction material is stainless steel.

ENGINEERING FLOW MEASUREMENT SOLUTIONS

Standard omniprobes have a 9.53 mm tip diameter, and a 152.4 mm overall length. The hex mount is 9.53 mm flat-to-flat. The exit tubing for pressure connections is 1.07 mm in diameter, 44.5 mm in length and is stainless steel. The standard probes are shown in Figure 1. Geometrically similar probes are available with a tip diameter of 6.35 mm.

All standard omniprobes are supplied with one calibration at a requested speed. Additional calibrations at other speeds may be specified on order. Custom omniprobes are normally supplied with a full calibration, unless this is precluded by geometry restrictions.

The advantage of using an omniprobe rather than a traditional five- or seven-hole probe is the angular resolution capability. Seven-hole probes are highly accurate until the velocity vector reaches a total angle of about 70° with respect to the flow. For five-hole probes this angle is about 60° . Omniprobes are able to resolve velocity vectors having angles of up to 165° with the probe axis (relative to base-to-tip direction). This allows the omniprobe to measure flows with very high angularity and even reversed flows.

Figure 1(a): Standard Straight Omniprobe. All Dimensions in Millimeters.

Figure 1(b): Standard L-Shaped Omniprobe. All Dimensions in Millimeters

AEROPROBE CORPORATION 1700 KRAFT DRIVE, STE 2350 BLACKSBURG, VA 24060

ENGINEERING FLOW MEASUREMENT SOLUTIONS

Figure 2: Probe Design and Specification

	Geometry Codes	Omniprobe Model Number Definition									
D	Tip Diameter	P or	Probe	Η	-	Tip	D	-	L	-	Τ
L	Overall Length	CP	Туре			Geom.					
Т	Probe Tip Length	be be	ed Sft	18		\sim	a s)		in (s		IS (S)
		l Prol	Shape at Le	2 or]		cal =	ths of Digit		'robe Digit		imete Digit
	Probe Type	dare	·L-i			heri	ree		of P ree		<i>Aill</i> ree
S	Straight	Cus	Co t	rts		Sp	Th		Th C		n N Th
L	L-Shaped		igh	Po			Hı er (eng rs (i di)
		P = CP	Stra S	Probe			eter in llimet		rall Le limete		obe T
Tip Geometry				of			Mi		Ve ViT		Pr
S	Spherical			ber			Di			-	lo l
				Numl			Tip				Lengt
	Note: T is used only if Required, Omitted Otherwise					е					

Standard Omniprobe Options

Standard omniprobe options include reduction of tip diameter to 6.35 mm.

Custom Omniprobes

Aeroprobe would be happy to consider your requests for custom omniprobes. Each probe is essentially designated by specifying the geometry fields, as shown in Figure 2. Some minor geometry changes from the standard probes (including, but not limited to, increased/decreased length and increased tip lengths on L-shaped omniprobes) can be easily accommodated. Typical custom geometry ranges are given in Table 1, and probes with parameters within these ranges will have minimized

ENGINEERING FLOW MEASUREMENT SOLUTIONS

customization costs. Please note the restrictions on bend radii in Table 2 and standard tolerances in Table 3.

Examples:

PL12-S953-152-070 specifies a standard 12hole L-shaped omniprobe with a 9.53 mm tip diameter, 152 mm overall length and a 70 mm tip length.

CPS18-S635-255 specifies a custom straight 18-hole omniprobe with a 6.35 mm tip diameter and 255 mm overall length.

 Table 1: Acceptable Geometry Limitations for Standard Omniprobes ¹:

Dimension	Minimum (mm)	Maximum (mm)		
Tip Diameter (D)	6.35 mm	9.53 mm		
Overall Length (L)	102 mm	255 mm		
Tip Length (T)	70 mm	102 mm		

¹Probes complying with these geometry ranges will have minimized customization costs.

Table 2: Minimum Bend Radii (Centerline)

Shaft Diameter (mm)	Minimum Bend Radius (mm)				
6.35	15.88				

Table 3: Standard Tolerances ¹:

Dimension or Component	Tolerance		
Tip Diameter and Exit Tubes	±0.05 mm		
Other Diameters (Housing Tubes):	±0.1 mm		
Locations (Centerlines, Ports):	±0.0508 mm,		
	worst case		
Primary Lengths	±2.54 mm		
(Overall Length, Exit Tubes, Hex Mount, Ferrules):			
Other Lengths (Bent Leg, Housing Stages)	±5.1 mm		
Included Tip Angle (Conical):	$\pm 0.5^{\circ}$		
On-Axis Bend Angle:	±1°		
Off-Axis Bend Angle:	$\pm 5^{\circ}$		

¹ Tighter tolerances may be specified on order of custom probes

OMNIPROBE CALIBRATIONS

The probe calibration is essential to proper operation of the probe. It defines a relationship between the measured probe port pressures and the actual velocity vector.

The omniprobe calibration process consists of placing the probe in a uniform, known flowfield (known in terms of velocity magnitude and direction, density, temperature, static pressure), and then rotating the omniprobe to over 7000 different orientations with respect to the known velocity vector. The probe tip is maintained at the same physical location during the entire calibration process. At each orientation, the probe port pressures, the freestream dynamic pressure and the stagnation thermodynamic quantities are recorded. In this way, a calibration map that relates port pressures to velocity can be created. One map is created for each Mach/Reynolds number.

For more information about aerodynamic calibration facilities and instrumentation, please see the Aeroprobe calibration services brochure. Typical calibration speed ranges are given in Table 4 as a function of omniprobe tip diameter.

Table 4: Calibration Speed Restrictions forTypical Omniprobe Tip Diameters

Omniprobe Tip Diameter	Calibration Velocity Range		
6.35"	5 to 320 m/s		
9.53"	5 to 60 m/s		

OMNIPRO PRESSURE-TO-VELOCITY REDUCTION SOFTWARE

The omniprobe pressure-to-velocity reduction software package is a post-processing, Windowscompatible package. A window from the program is shown in Figure 3.

The software utilizes a local-least squares (LLS) fit of the closest (to the test point in question) calibration points, for each of the calibration variables. The LLS searching algorithm uses specialized multi-region search routines to improve accuracy.

ENGINEERING FLOW MEASUREMENT SOLUTIONS

The reduction algorithm has typical average errors of 1% (or less) in the velocity magnitude and 0.5° (or less) in the flow angles, when used with calibration data generated in our facilities.

	Patto when	
of Pressee [Rylamon Pressee [Tanger at an] Kar		4
		hat
Name of party [1]		_
Party present to alive (solates file.)		
	(denote bot)	
8 P P P P P		61
o have been been been been been		
		-
Patanosatudi (Tar 2)		Paternel
and the name addition Dudget the free	ine C	1
State of the second sec		1001
		Patter
		the second se
		1000

AEROPROBE CORPORATION

ORDERING INFORMATION

Item	Description			
	Standard Omniprobes			
PS12	Standard Straight 12-hole			
	Omniprobe, Calibrated			
PL12	Standard L-Shaped 12-hole			
	Omniprobe, Calibrated			
PS12U-HT900	Straight High-Temperature			
	Omniprobe, 9.53 mm Tip OD,			
	Uncalibrated, Rated to 900°C			
	Standard Omniprobe Options			
TIP-OMNI6	6.35 mm Tip Diameter			
	Omniprobe Calibrations			
SPCO	Standard Setup and Calibration of			
	Omniprobe (Specify Speed)			
XC0	Extra Omniprobe			
	Calibration (Specify Speed)			
	Custom Omniprobes			
CPS12	Custom Straight 12-hole			
	Omniprobe, Calibrated			
CPL12	Custom L-Shaped 12-hole			
	Omniprobe, Calibrated			
	Tubing			
ETUB-3-1	Flexible Tubing for Probe			
	Pneumatics, 1/32" ID, 3/32" OD, 50			
	ft			
	Repair			
RPRP-OMNI-B	Probe Repair, Base			
RPRP-OMNI-E	Probe Repair, Extended			
	Pressure-to-Velocity Reduction			
	Software			
SW-OMNI	Omnipro Reduction Software			

Additional Information

For information about other Aeroprobe products, please visit our websites: <u>www.aeroprobe.com</u>.

REQUIREMENTS

Use of omniprobes requires ability to measure port pressures. Aeroprobe provides complete pressure data acquisition systems and software for this

ENGINEERING FLOW MEASUREMENT SOLUTIONS

purpose (sold separately). The Omnipro software requires Windows OS.

NOTES:

- Standard Omniprobes Are Shown in Figure 1, All Other Geometries Must Be Given a Custom Designation.
- All Standard Probes Include One Standard Calibration at a Speed of the Customer's Choice (5 m/s – 320 m/s for 6.35 mm Tips, and 5 m/s – 60 m/s for 9.53 mm Tips). Specify Speed on Order!
- Custom Omniprobes Include One Standard Calibration at a Speed of the Customer's Choice if Omniprobe Geometry Permits

Figure 4: 9.53mm Omniprobe Tip

Geome	try and Construction	Measurement Accuracy (w/Aeroprobe Calibration)			
Probe Geometry	Straight, L-Shaped	Flow Angles	< 0.5°		
Number of	12	Total Flow	< 1.0%*		
Holes		Velocity			
Tip Geometry	Spherical	Required	Reference Pressure, Total		
	-	Auxiliary Data**	Temperature		
Tip Diameter	9.53 mm; 6.35 mm Standard	Flow Angle of	Cone Angle:		
	Option	Receptivity	• V < 60 m/s: 160°		
			• $V > 60 \text{ m/s: } 150^{\circ}$		
Material	Stainless Steel	Calibration	5 m/s to 320 m/s (Mach = 0.95)		
		Flow Speeds			
Pneumatic	Tygon R3603 Formulation,	Pressure Data	Omnipro Software, Returns		
Connection	1/32" ID, 3/32" OD Standard	Reduction	Flow Vector from Set of Port		
	for Exit Tubing of 0.89 mm –		Pressures		
	1.6 mm (0.035" – 0.063") OD.	Frequency	Low, Best for Determining		
		Response	Time-Averaged Flows, Time		
			Response/Bandwidth Available		
			Upon Request		
Mounting	Hex Prism (9.53 mm Flat-to-	Media	Non-Reactive Gases		
	Flat Standard), Rectangular		(Brass/Stainless). Other Media		
	Prism, Cylindrical		Possible – Contact Aeroprobe		
Probe Angle					
Reference		Temperature	Tip Thermocouple Option,		
	Straight: Flat on Hex Mount	Measurement	Compatible with AeroAcquire		
	Bent: lane of Bent Probe Tip		Data Acquisition Software		
Flow Temp.	$0^{\circ}C - 450^{\circ}C$	*Utilizing 0.1% Accurate Pressure Sensors Properly			
Limits		Rated for Flow Speed			
		**For Most Accurate Compressible P-V Reduction			

Conventional Omniprobe (12-Hole Probe) Specifications